MATH4210: Financial Mathematics Tutorial 11

Jiazhi Kang
The Chinese University of Hong Kong
jzkang@math.cuhk.edu.hk

9 April, 2024

Interest Rate

r is an cnnullijed nate
Let r be the interest rate. Suppose that you place $\$ x_{0}$ in an account in a bank. After n years, you will have the amount

- $y_{n}=x_{0}(1+n r)$ if the interest rate is the simple interest rate.
(-) $y_{n}=x_{0}(1+r)^{n}$ if the interest rate is the annual compound interest

- $y_{n}=x_{0}\left(1+\frac{\sqrt{r}}{m}\right)^{m n}$ if the interest rate is the compound interest rate and compound m times per annul. $x_{0} \quad x_{0}+x_{0} \cdot \frac{r}{2} \quad\left(x_{0}+x_{0} \cdot \frac{r}{2}\right) \frac{r}{2}+x_{0}$
- $y_{n}=x_{0} e^{n r}$ if the interest rate is the continuous ${ }^{1 / 2}$ compound interest rate.
$y_{n}=x_{0}+$ interest income

Present Value

We can always use $\$ x_{0}$ now as principal in a risk -free investment at (continuous compound interest) rate $r>0$. It guarantees the amount

$$
\underline{x_{0} e^{r t}}>x_{0}
$$

at time t. Equivalently, if we deposit $\left\{x e^{-r t} \mid\right.$ at the bank, we get $\$ x$ at time t, thus

$$
\text { We call } x e^{-r t} \text { the present value }(\mathrm{PV}) \text { of } x \text {, }
$$

which is also called the discounted value of x at the future time t, and the factor $e^{-r t}$ is called the discount factor.

$$
\begin{aligned}
& \text { factor } e^{-r t} \text { is called the discount factor. }\left(e^{-r t}, \frac{1}{(1+r t)}, \frac{1}{(1+r)^{+}}\right)
\end{aligned}
$$

Interest Rate

PV, Face value, coupon
4 year coupon -bond price (pom(prinital)
Proposition
Present value of a financial derivative is the sum of all discounted future cash flows:

$$
P V=\sum_{i} \frac{\text { CashFlow }_{i}}{\text { Dicount }_{i}} \stackrel{\text { es }}{=}=\sum_{\substack{i=1 \\ \text { coupon-6and) }}}^{n}\left(\frac{\text { coupon i }}{e^{r i}}\right)+\frac{\text { Pan }}{e^{n-r .}}
$$

Question
a) Find the value of a 10-year Eero-coupon bond of face value $\$ 100$ if the the annuzt simple interest rate 12%.
b) Find the face value of a 10 -year zero-coupon bond if it is issued for 100 and the continuous compound interest rate is 3%.

$$
\text { a): } \begin{aligned}
P V & =\frac{\text { Cosh flow }}{\text { Discount }} \\
& =\frac{110}{(1+2 \% \cdot 10)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } P V=\$ 100 \cdot r=3 \%, \text { no coappr. } \\
& P V=\$ 100=\frac{F V}{e^{33}[\text { 囷 }} \Rightarrow F V=\$ 100 x \cdot e^{30 \%} .
\end{aligned}
$$

Interest Rate

Question
Consider a 30 -year $\$ 2000$ bond, that has coupons every $1 / 2$ year in the amount of $\$ 20$, for a total of 60 times until 30 years at which time you receive $\$ 2020$. The bond price is $\$ 21000$. What is the yield (ie. internal

$$
\begin{aligned}
&{ }^{2100} \\
& P V=\frac{20}{e^{0.5 r}}+\frac{20}{e^{1.0 r}}+\frac{20}{e^{1.5 r}}+\cdots+\frac{20+2000}{e^{30 r}} \\
&= \sum_{i=1}^{30} \frac{20}{e^{0.51 . i r}}+\frac{2000}{e^{30 r} \cdot} \\
& \text { set } x=e^{0.5 r} \quad 2100=\sum_{i=1}^{30} \frac{20}{x^{i}}+\frac{2000}{x^{.60 .}} \Rightarrow a \cdot x^{60}+b \cdot x^{1}+c=0 \\
& x=1, x=0.9 .
\end{aligned}
$$

Present Value

Question

Pricing a coupon bond: consider 2 -year 2000 bond that has coupons every $1 / 2$ year in the amount of $\$ 50$, for a total of four times until 2 years at which time you receive $\$ 2050$. Suppose the dontinuous compound interest rate is r. What is its price of the bond?

$$
P V=\sum_{i=1}^{4} \frac{50}{e^{0 \cdot 5 \cdot 7 \cdot i}}+\frac{2000}{e^{2 \cdot r}}
$$

Annuity/Perpetual Bond

Question

An imaginary nice government that does net exists on this planet promises to pay you (and your descendant $\$ 10,000$ innmediately and the same amount every year perpetually. If the the compound annual interest rate is 2.5%, what is its present value of this plan?

$$
\begin{aligned}
p V=\sum \frac{\text { Cash flow }}{\operatorname{Discount}}=\sum_{i=0}^{+\infty} \frac{\$ 10000}{(1+2.5 \%)^{i}} & =10000 \sum_{i=0}^{+\infty} \frac{1}{(1.025)^{i}} \\
& =\left(-1000 \cdot\left(\frac{1}{1-\frac{1}{1.025}}\right)\right.
\end{aligned}
$$

Annuity/Perpetrial Bond

Question

Joyce wants to use a land to build a church. The government requires her to pay the nominal rent 1,000 every year perpetually. A bank offers a plan: Joyce pay the bank 50,000 at once and the bank promises to pay 1,000 to the government every year. Suppose the discrete annual compound interest is 2%. Should Joyce accept this offer? (Unit: \$)

$$
P V_{1}=1000\left(\frac{1}{1-\frac{1}{1.02}}\right)
$$

$P V_{2}=50000$

Options Revisit

Question (Example on Slides 5)
(a) .Suppose that we have three European call options with the same maturity T ip the financial market whose price at time $t=0$ are:

$$
\begin{array}{|l|l|l|l}
& \begin{array}{l}
C_{2}\left(T=T_{0}\right) \\
C_{2}\left(T=2 T_{0}\right)
\end{array} & \begin{array}{l}
P_{2}\left(T=T_{01}\right. \\
C_{2}\left(T=2 T_{0}\right)
\end{array} & \begin{array}{l}
C_{1}(K=90)=10 \\
C_{2}(K=100)=9 \\
\end{array} \\
\hline
\end{array}
$$

Suppose the interest fate is zero. Construct the arbitrage strategy.
(b). At $t=0$, the underlying asset $S_{0}=100$. We keep C_{1} and C_{3} the same. But We don't have C_{2}, instead there is a European put option with the same setting such that $P_{2}(K=100)=9$. Find the arbitrage strategy. $C(k)$ is the function of strike price is convex.

$$
\xrightarrow{\frac{C(k)}{C(10100} 1110 .} \frac{C(k=110)}{2} \geqslant C(k=100)
$$

So either $\frac{C_{1}+C_{3}}{2}$ is lower then actual value or. C_{2} is higher than actual value
So we buy bow and sell high:

$$
\begin{aligned}
\pi & =\frac{c_{1}+c_{3}}{2}-c_{2} \\
\text { or, } \pi & =c_{1}+c_{3}-2 c_{2} .
\end{aligned}
$$

(b): We the prut -call parity to construct C_{2}.using

$$
\begin{aligned}
& P_{2} \\
& c_{2}=P_{2}+S_{0}-K=P_{2}+100-100 \\
&=P_{2}
\end{aligned}
$$

